Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 214, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167629

RESUMO

This paper reports the discovery that water can trigger a peculiar nuclear reaction and produce energy. Cavitation may induce unusual reactions through implosion of water vapor bubbles. Many of this research has been published formally or informally. We have conducted experiments using two reactor types made from multiple-pipe heat exchanger and found that the heat exchange process of water produces peculiar excess heat and abnormally high pressure leading to rupture of the reactor. Recently, we have tested another eight reactors. Interestingly, these reactors produce non-condensable gas. We suspected that they include 22Ne and CO2. We used a mass spectrometer (MS) to analyze 14 gas samples collected from 8 reactors, including ten samples showing a coefficient of performance COPx > 1.05 (with excess heat) and four having COPx < 1.05 (without excess heat). Several methods were adopted to identify the gas content. For CO2 identification, two methods are employed. For 22Ne identification, three methods are employed. All the results confirm that isotope 22Ne and regular CO2 really exist in the output gas from reactors determined to have excess heat. We conjecture a possible mechanism to produce 22Ne and CO2 and find out that 12C and isotope 17O are the intermediate. They finally form isotope gases containing 17O, including H2O-17 (heavy-oxygen water), isotope O2 (16O-17O), and isotope CO2 (12C-16O-17O). In the excess heat producing reactors, all these gasses were detected by MS in the absence of 20Ne and 21Ne. The observed isotope gases produced from reactors having excess heat verifies that water can trigger a peculiar nuclear reaction and produce energy.

2.
Polymers (Basel) ; 14(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956696

RESUMO

This paper adopted transient CFD (Computational Fluid Dynamics) simulation analysis with an experimental method for designing and surveying the quick and uniform rise in the temperature of the plastics into the insert mold cavity. Plastic injection molding utilizing VCRHCS (Vapor Chamber for Rapid Heating and Cooling System) favorably decreased the defects of crystalline plastic goods' welding lines, enhancing the tensile intensity and lowering the weakness of welding lines of a plastic matter. The vapor chamber (VC) possessed a rapid uniform temperature identity, which was embedded between the heating unit and the mold cavity. The results show that the tensile strength of the plastic specimen increased above 8%, and the depths of the welding line (V-gap) decreased by 24 times (from 12 µm to 0.5 µm). The VCRHCS plastic injection molding procedure can constructively diminish the development time for novel related products, as described in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...